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Abstract 

 

The response of a point object in cone beam 
spiral scan is analysed.  Based on the result a 
sufficient condition for the spiral scan long object 
problem employing backprojection is formulated.  
By making use of the sufficient condition a 
general class of exact, backprojection based 
reconstruction algorithms for spiral scan cone 
beam CT is developed which are capable of 
reconstructing a sectional ROI of the long object 
without contamination from overlaying materials 
using spiral scan cone beam data irradiating the 
particular ROI and its immediate vicinity only.  
Also, at each source position the minimum size 
of the region on the detector plane required for 
3D backprojection is reduced, which in term 
brings about reduction in the amount of 3D 
backprojection computation. 
 
 
I.  2D filtering and masking  
 

Spiral scan computed tomography with large 
area detectors is of increasing interest for rapidly 
scanning spacious volumes.  As the cone angle 
increases the artifacts generated in the 
reconstructed images by the approximate 
reconstruction algorithms will become more and 
more serious, and exact reconstruction algorithms 
are required.  It is known that if the spiral path is 
long enough so that every plane intersecting the 
object also intersects the spiral path, the object 
can be reconstructed.  For long objects, however, 
it is highly desirable to scan only the portion of 
the object that is of interest, for the sake of 
reduction in scan time as well as radiation 
protection of the patient in medical imaging.  
However, as a consequence of the divergent 
nature of the X-ray cone-beams different regions 
of the object are correlated.  To reconstruct only 
a region-of-interest (ROI) from a spiral scan 

which covers the particular ROI and its 
immediate vicinity only poses a challenge for the 
imaging community.  This is referred to as the 
long object problem in the literature.  

 
The first solution to the long object problem in 
spiral cone beam CT is the Radon space driven 
(spiral  + 2 circles) algorithm reported in [1,2].  A 
key part of the reconstruction algorithm is the 
data-combination technique in which the radial 
Radon derivative for each plane intersecting the 
ROI is obtained by combining the partial results 
computed from the cone beam data at the various 
source positions that the plane intersects.  The 
method is illustrated in Figure 1 which represents 
a plane Q intersecting the ROI and the scan path.  
Since the partial planes do not overlap and 
together they completely cover the portion of 
plane Q that lies within the ROI, the Radon 
derivative for plane Q can be obtained exactly by 
summing the Radon derivatives for the partial 
planes.  From Figure 1 it is evident that the 
portions of the object outside the ROI do not 
need to be irradiated.  Therefore during scanning 
collimators can be used to block off radiation 
from reaching those portions.   
 
Restricting the cone beam projection data to the 
appropriate angular range for data combination 
can be accomplished by a masking process.  The 
mask consists of a top curve and a bottom curve 
formed by projecting on the detector the spiral 
turn above and the turn below from the current 
source position.  It can be easily seen that such 
masking procedure corresponds exactly to the 
angular range bound by the prior and the 
subsequent source positions as indicated in 
Figure 1.  We shall refer to this mask as the data-
combination mask.  For a flat detector located at 
the rotation axis such that the line connecting the 
source to the detector origin is normal to the  



 

 
 
 
Figure 1. A typical integration plane covering the ROI 

defined by the source positions.  Other 
integration planes may have more or less spiral 
scan path intersections, and may not intersect 
either the top or the bottom circle scan paths. 

 
 
 
detector plane, the equation for the top curve for 
the spiral scan is given by: 
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where u and v are the Cartesian coordinate axes 
of the detector with the v axis coinciding with the 
rotation axis, R is the radius of the spiral, and h is 
the distance between adjacent spiral turns (the 
pitch).  The bottom curve is the reflection of the 
top curve about the origin, i.e. (u,v) -> (-u,-v).  
The shape of the spiral mask is shown in Figure 
2.  The figure assumes right-handed spiral 
rotation.  
 

 

 
 
Figure 2. The mask on the flat detector which defines the 

desired partial plane for Radon derivative 
computation.  For any plane of integration, the 
portion of its intersection line with the detector 
within the mask is the desired partial plane. 

 
 
 
In the backprojection version of the (spiral  + 2 
circles) algorithm [3], the masked cone beam 
data are 2D filtered and then 3D backprojected.  
The 2D filtering is carried out in 2 different 
manners for different parts of the cone beam 
data: the data inside the mask are line-by-line 
ramp filtered in the direction of the projected 
scan path direction, whereas those on the mask 
boundary are processed with a 2D filter which 
includes 2D backprojection at all angles on the 
detector plane.  By virtue of the Radon inversion 
formula the 2D backprojection operation should 
be extended to the entire detector plane extended 
to infinity; in practice it is extended to the extent 
sufficient to cover the entire ROI.  Through the 
line-by-line ramp filtering in the direction of the 
projected scan path direction the data inside the 
mask boundary only affect a localized portion of 
the reconstruction volume.  On the other hand the 
data on the mask boundary affect the entire ROI 
because of the long range of the 2D 
backprojection.  This long range correlation 
caused by the mask boundary data is the crux of 
the long object problem employing 
backprojection driven algorithms. 
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II.  Spiral scan long object problem 
 
Recently a number of approaches solving the 
long object problem with only the spiral scan 
appeared in the literature.  In the virtual circle 
(VC) method reported by Kudo et al [4] it is 
found that by utilizing the unique property of the 
PI lines [5], removing the circles in the (spiral  + 
2 circles) algorithm contaminates only a localized 
portion at each end of the ROI, and thus the 
remaining portion of the ROI can still be 
reconstructed without contamination from 
overlaying materials.  In the zero boundary (ZB) 
method reported by Defrise et al [6], the unique 
property of the PI lines is also utilized to remove 
the long range correlation between different 
regions of the object caused by the data on the 
mask boundary.  In the local ROI (LR) method 
developed by Sauer et al [7] and later 
implemented by Schaller et al [8], de-correlation 
between different regions of the object is 
achieved on the φ-planes, which are the planes 
which contain the z axis in the Radon space.  
Subsequently the backprojection version of the 
local ROI method was developed by Tam [9] and 
implemented by Lauritsch et al [10].  Unlike the 
(spiral  + 2 circles) algorithm, with only spiral 
scan it is necessary to scan some portions of the 
object adjacent to the ROI in order to reconstruct 
the ROI without contamination; the spiral path 
required beyond the ROI is referred to as 
overscan in the literature.  For comparison the 
overscan for the (spiral + 2 circles) algorithm is 
zero. 
 
All approaches are theoretically exact solutions 
to the long object problem.  However, even 
among the backprojection driven algorithms very 
different methodologies are employed in 
reconstructing the ROI without contamination, 
and the overscan required by each algorithm is 
substantially different from the others.  It is not 
apparent that the three methods have any features 
in common.   
 
 
III. A sufficient condition 
 

In this paper a sufficient condition for 
backprojection driven image reconstruction 
algorithms for the long object problem with spiral 
scan is derived.  The analysis is based on the 
analysis of the response of a point object 
enclosed inside the spiral path.  It is found that 
the support of the contribution to the 
reconstruction volume from the cone beam data 
on the mask boundary becomes localized when 
certain condition is satisfied.  Each mask 
boundary data point corresponds to a PI line, as 
illustrated in Figure 3, which intersects two 
source positions.  At each of the 2 source 
positions the mask boundary data point, after 
some processing, is 2D backprojected along each 
line intersecting the data point, and then 3D 
backprojected onto the 3D backprojection planes 
defined by the source position and each 2D 
backprojection line through the data point.  Thus 
each 3D backprojection plane intersects the line 
connecting the source position and the data point, 
which is the PI line corresponding to the data 
point.  Since the 2 source positions that acquire 
the mask boundary data point have the same PI 
line, it follows that the 2 source positions have 
the same set of 3D backprojection planes when 
processing the data point.     
 
Consider a fixed mask boundary data point.  If 
for each 3D backprojection plane the data point is 
processed, which includes filtering and 3D 
backprojection, to the same extent at the 2 source 
positions that acquire the data point, then the 
support of the contribution to the reconstruction 
volume from the data point can be shown to be 
localized.  The minimum size of the region on the 
detector plane required for 2D backprojection 
and the subsequent 3D backprojection for these 
mask boundary data can be prescribed using 
projective geometry, and is found to be smaller 
than the minimum size according to current 
understanding, viz. the size required to cover the 
entire ROI.  The extent to which the detector size 
is reduced depends on the spiral pitch, and is 
substantial for small pitch.  The reduction in the 
detector size is important for the reduction in the 
amount of 3D backprojection computation. 
 
Among the three above-mentioned long object 



backprojection driven reconstruction algorithms, 
the VC method and the backprojection LR 
method are found to satisfy the sufficient 
condition, but not the ZB method.  Based on the 
sufficient condition a general class of exact, 
backprojection driven reconstruction algorithms 
for long object imaging in spiral scan cone beam 
CT is developed.  It is found that the VC method 
is a special case of this class of algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Mask boundary data and the corresponding 2 

source positions on the PI lines. 
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